3.1273 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=211 \[ \frac {2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\sqrt {2} (A-B+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 (A-5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{15 d \sqrt {a \sec (c+d x)+a}}+\frac {2 A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}} \]

[Out]

-(A-B+C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)*cos(d*x+c)^(1
/2)*sec(d*x+c)^(1/2)/d/a^(1/2)+2/5*A*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/15*(13*A-5*B+15*C)
*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)-2/15*(A-5*B)*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*sec(d*x+
c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.67, antiderivative size = 211, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {4265, 4086, 4022, 4013, 3808, 206} \[ \frac {2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\sqrt {2} (A-B+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 (A-5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{15 d \sqrt {a \sec (c+d x)+a}}+\frac {2 A \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(5/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

-((Sqrt[2]*(A - B + C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*S
qrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d)) + (2*(13*A - 5*B + 15*C)*Sin[c + d*x])/(15*d*Sqrt[Cos[c + d
*x]]*Sqrt[a + a*Sec[c + d*x]]) - (2*(A - 5*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(15*d*Sqrt[a + a*Sec[c + d*x]])
 + (2*A*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*d*Sqrt[a + a*Sec[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4013

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 4022

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 4086

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*
Csc[e + f*x])^n)/(f*n), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rule 4265

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx\\ &=\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \sec (c+d x)}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{2} a (A-5 B)+\frac {1}{2} a (4 A+5 C) \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx}{5 a}\\ &=-\frac {2 (A-5 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \sec (c+d x)}}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{4} a^2 (13 A-5 B+15 C)-\frac {1}{2} a^2 (A-5 B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx}{15 a^2}\\ &=\frac {2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {2 (A-5 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \sec (c+d x)}}-\left ((A-B+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx\\ &=\frac {2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {2 (A-5 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \sec (c+d x)}}+\frac {\left (2 (A-B+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac {\sqrt {2} (A-B+C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {2 (13 A-5 B+15 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {2 (A-5 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}}+\frac {2 A \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.56, size = 163, normalized size = 0.77 \[ \frac {\sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) \left (\sqrt {1-\sec (c+d x)} \sec ^2(c+d x) (-2 (A-5 B) \cos (c+d x)+3 A \cos (2 (c+d x))+29 A-10 B+30 C)+15 \sqrt {2} (A-B+C) \sec ^{\frac {5}{2}}(c+d x) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )\right )}{15 d \sqrt {1-\sec (c+d x)} \sqrt {a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(5/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(Cos[c + d*x]^(3/2)*((29*A - 10*B + 30*C - 2*(A - 5*B)*Cos[c + d*x] + 3*A*Cos[2*(c + d*x)])*Sqrt[1 - Sec[c + d
*x]]*Sec[c + d*x]^2 + 15*Sqrt[2]*(A - B + C)*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c
 + d*x]^(5/2))*Sin[c + d*x])/(15*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 378, normalized size = 1.79 \[ \left [\frac {4 \, {\left (3 \, A \cos \left (d x + c\right )^{2} - {\left (A - 5 \, B\right )} \cos \left (d x + c\right ) + 13 \, A - 5 \, B + 15 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + \frac {15 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right ) + {\left (A - B + C\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac {15 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right ) + {\left (A - B + C\right )} a\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) + 2 \, {\left (3 \, A \cos \left (d x + c\right )^{2} - {\left (A - 5 \, B\right )} \cos \left (d x + c\right ) + 13 \, A - 5 \, B + 15 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/30*(4*(3*A*cos(d*x + c)^2 - (A - 5*B)*cos(d*x + c) + 13*A - 5*B + 15*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x +
 c))*sqrt(cos(d*x + c))*sin(d*x + c) + 15*sqrt(2)*((A - B + C)*a*cos(d*x + c) + (A - B + C)*a)*log(-(cos(d*x +
 c)^2 + 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x
+ c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c) + a*d), 1/15*(15*sqrt(2)*((A - B +
 C)*a*cos(d*x + c) + (A - B + C)*a)*sqrt(-1/a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/
a)*sqrt(cos(d*x + c))/sin(d*x + c)) + 2*(3*A*cos(d*x + c)^2 - (A - 5*B)*cos(d*x + c) + 13*A - 5*B + 15*C)*sqrt
((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {a \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*cos(d*x + c)^(5/2)/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 2.31, size = 253, normalized size = 1.20 \[ \frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (15 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, A \sin \left (d x +c \right )-6 A \left (\cos ^{3}\left (d x +c \right )\right )-15 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, B \sin \left (d x +c \right )+15 C \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+8 A \left (\cos ^{2}\left (d x +c \right )\right )-10 B \left (\cos ^{2}\left (d x +c \right )\right )-28 A \cos \left (d x +c \right )+20 B \cos \left (d x +c \right )-30 C \cos \left (d x +c \right )+26 A -10 B +30 C \right )}{15 d a \sin \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/15/d*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(15*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2
))*(-2/(1+cos(d*x+c)))^(1/2)*A*sin(d*x+c)-6*A*cos(d*x+c)^3-15*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))
*(-2/(1+cos(d*x+c)))^(1/2)*B*sin(d*x+c)+15*C*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c
)))^(1/2)*sin(d*x+c)+8*A*cos(d*x+c)^2-10*B*cos(d*x+c)^2-28*A*cos(d*x+c)+20*B*cos(d*x+c)-30*C*cos(d*x+c)+26*A-1
0*B+30*C)/a/sin(d*x+c)

________________________________________________________________________________________

maxima [B]  time = 0.82, size = 774, normalized size = 3.67 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/60*(sqrt(2)*(60*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 5*cos(2/
5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 60*cos(5/2*d*x + 5/2*c)*sin(4/5*
arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 5*cos(5/2*d*x + 5/2*c)*sin(2/5*arctan2(sin(5/2*d*x + 5/
2*c), cos(5/2*d*x + 5/2*c))) - 30*log(cos(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + sin(1/5
*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + 2*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x
+ 5/2*c))) + 1) + 30*log(cos(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + sin(1/5*arctan2(sin(
5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 - 2*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) +
1) + 6*sin(5/2*d*x + 5/2*c) - 5*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 60*sin(1/5*arct
an2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*A/sqrt(a) + 10*(3*sqrt(2)*log(cos(1/4*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c)))^2 + sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c))) + 1) - 3*sqrt(2)*log(cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin
(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) +
 1) + 2*sqrt(2)*sin(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 6*sqrt(2)*sin(1/4*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c))))*B/sqrt(a) - 30*(sqrt(2)*log(cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 +
sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))
) + 1) - sqrt(2)*log(cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/4*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c)))^2 - 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*sqrt(2)*sin(1/4*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*C/sqrt(a))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^{5/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(5/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^(5/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________